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Microwave Circuit Analysis by Sparse-Matrix Techniques
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PAOLO TIBERIO, MEMBER, IEEE

Abstract—Linear microwave circuit analysis by sparse-matrix
techniques is discussed. Optimum equation ordering and pivoting
are proposed to reduce execution time, storage requirement, and to
improve accuracy. A direct first-order sensitivity method using
sparse-matrix techniques is proposed and compared with the adjoint
network method. Details on the implemented program and a nu-
merical example are given. '

INTRODUCTION

HE ADVANTAGES which derive from the use of

scattering matrices in microwave circuit analysis and
design have been clearly recognized for some time [1}-
[6]. They arise from the greater convenience of describing
circuit performance in terms of normalized waves, and
from the possibility offered by scattering parameters of
being easily measured on wide frequency bands by auto-
matic measure systems [7], and this allows the charac-
terization of those components which, especially at very
high frequencies, cannot be schematized by lumped ele-
ment circuits. These interesting features gain great weight
when the design concerns circuits to be made by modern
techniques (such as thin-film, thick-film, or integrated
circuits) since experimental iteration techniques eannot
be adopted and the circuit must be defined with all details
before its realization.

In this paper, a suitable mathematical formulation is
proposed, both for normalized waves and for first-order
sensitivity. A matrix W is defined which completely de-
scribes the circuit by topological information and compo-
nent S parameters. Pivoting and optimal equation order-
ing are discussed to ensure good precision and to reduce
the computation effort. Finally, a program which deter-
mines the requested network functions on the basis of a
complete circuit deseription is presented and a numerical
example is given to prove its efficiency.

ProBLEM FORMULATION

For every microwave cireuit component with n; ports,
a system of n; equations can be written

bk = Skak (1)

Si; being its scattering matrix and a, and b; the vectors of
incident and reflected waves at its n; ports. A generator,
instead, is described by the relation
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by, = S,a, + ¢,

to take the impressed wave ¢, into account, too.

Collecting together the equations relative to all the m
components and generators, a system describing the cir-
cuit with all the elements uncoupled is obtained:

()

b=Sa+c (3)
where
a by (5]
a= (.11 B b= i)z ;, €= (..‘1 ,
@, b e
S 0 - 0

s=0 --. s 0 (4)

0 -+ 0 --- S,

a;, b;, and c; being incident, reflected, and impressed wave
vectors relative to the sth component and S; its scattering
matrix.

The connections between various components imposed
by ecircuit topology introduce constraints on incident and
reflected waves at adjacent ports which may be put in
the form

(5)

T being the connection matrix. Its elements are all zeros
except those in the entries corresponding to adjacent
ports, which are 1’s if normalization numbers are the
same [3], [4], [6].

From (3) and (5), by setting

W=r—-3=S

b=rTa

(6)
one obtains

b= TWc (7)

which completely describe the ecircuit behavior and allow
determination of the waves @ and b at all the component
ports when impressed waves ¢ are given.

W is hereafter referred to as the connection scailering
matrix; its order

a= Wi

m
n =y n;

=1

equals the total number of component ports.
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SPARSE-MATRIX SoruTtioN AND EqQuaTioN ORDERING

A discussion on the properties of matrix W is given in
this section in order to find the most convenient tech-
nigue to solve system (7).

The computational effort can be greatly reduced by
taking into account the following.

1) The only nonzero elements of matrix W are: the
diagonal ones, which are the reflection coeflicients at com-
ponent ports; those in the entries corresponding to ports
belonging to the same component, which are the trans-
mission coefficients between the two ports; and those
corresponding to ports connected together, which take
the constant value 1.

2) The sparseness structure of W is fixed and does not
depend on the frequency.

3) Numerical values of nonzero elements may change
with the frequency except the 1’s indicating connections.

4) Vector ¢ has nonzero terms only in positions relative
to generators.

The fixed sparseness structure of W and ¢ makes the
Crout method"very convenient for solving system (7),
especially when it has to be solved many times with
changed coefficient values. The method consists of factor-
ing W into two matrices:

W= LU (8)

L being lower triangular and U upper triangular with 1’s
on the diagonal. Then, by the forward and back substitu-
tions,

Ly=c Us=y 9)
derived from (7), all the wave variables may be obtained.

The elements of matrices L and U and vectors @ and y
are determined by recurrent formulas [97].

All the elements of L and U can be stored in a matrix:
IT=L+U—E

E being the unity matrix. It is simple to see that any tp
of T is zero if both wj of W and all the products t;:t:,
with 1 <4 < min {7 — 1,k — 1}, are zero. The nonzeros
generated by LU factorization are hereafter called fills
in accordance with current usage. The number of fills
depends on the W sparseness structure.

A great reduction in execution time can be obtained
with the reduced Crout method [107] according to
which only the nonzero operands are considered in LU
factorization and in forward-back (FB) substitutions.
The operations involved depend only on the sparseness
structure of W and are therefore always the same for a
given circuit topology.

Since a great number of analyses have usually to be
performed for the same cireuit, it is very convenient to
implement the reduced Crout mcthod by generating a
code containing only those statements which are strictly
necessary to execute the LU factorization and the FB
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substitutions relative to that circuit.

Code length depends mainly on the structure of W
and, to a lesser degree, on ¢ sparsity. It can be strongly
reduced by an appropriate ordering of the rows and col-
umns of W before generating the code. Particular atten-
tion must, however, be paid because precision depends on
the values of the pivots I;; of the reordered matrix.

Predetermined pivoting might cause, for some frequency
points, a loss of accuracy due to roundoff errors, since
the values of component parameters change with the fre-
quency. However, every row of W contains the eonstant
1 deriving from I' which could be an ideal pivot because
it allows great precision [9] independent of frequency
and, at the same time, divisions are avoided. Indeed,
about a half of the 1’s are modified in the course of the
factorization process but rarely may the value of any
drop to zero and then only in anomalous cases.

In order to find the best ordering strategy for matrix
W, a computer program has been implemented which,
by simulating the LU factorization, determines the num-
ber of fills occurring and the operations involved. With
this program many ordering algorithms have been tested
on several microwave circuits and the average ratio be-
tween the nonzeros in T and in W has been assumed as
the index of ordering efficiency. Some of the tested strate-
gies have been expressly set up for matrix W and others
derived from ‘those proposed by different authors with
reference to the nodal admittance matrix [117], [17].
These have been modified by ordering columns so as to
place 1’s on the main diagonal, since the pivoting question
is not generally taken into account in sparse solution of
the nodal admittance matrix.

A comparative examination based on the efficiency
index, speed, and simplicity of implementation, indicated
that the most convenient algorithm for the microwave
circuits deseribed by system (7) is the following [8].

1) The couple of rows relative to adjacent ports are
considered together and ordered so that each couple has
a number of nonzeros not greater than that of the suc-
cessive one; in every couple the row with fewer nonzeros
precedes the other.

2) The columns are then ordered so as to place all the
1’s of I' on the main diagonal.

FrrsT-ORDER SENSITIVITY

Sensitivities of incident and reflected wave vectors a
and b with respect to any variable  on which the param-
eters of one or more components depend, are generally
very useful to the circuit designer, both in evaluating the
dependence of circuit functions on some variables, and in
circuit optimization.

Inasmuch as circuit analysis is earried out by sparse-
matrix solution with code generation, two methods can
find useful application. One, the direct method, is con-
venient when the sensitivities of normalized waves at
many ports with respect to one variable are required.
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The other, based on adjoint ecircuit concepts, is preferable
when sensitivities of only one normalized wave with re-
spect to many variables have to be computed [67], [12]],
[1387, [18]. In order to justify this declaration, the two
methods are now briefly described.

Partial derivation of (7) with respect to a generic vari-
able z gives

2% 4S8

—=—Wl— Wl =W'!1—a= W, (10)
dx dx

the connection matrix I' being independent of  and

oS
J— al
ox

EN S;
;= —a=|—a;

11
ax iz (1)

98,
= q.

ox

Computation of wave sensitivities according to the
direct method consists in the application of (10) which
differs from (7) due to substitution of the impressed
wave vector ¢ by c,. It can be computed in terms of
matrices dS,/dz of all the components depending on z
and in terms of vectors a; of the incident waves at their
ports. These last are obtained from the circuit analysis
described in the previous section.

Sparse-matrix solution applied to (10) requires the LU
factorization of W and FB substitution according to vec-
tor ¢,. The former having been executed for analysis does
not require any computation while the latter consists of
a number of arithmetical operations corresponding to the
execution of the FB-substitution code already generated
for the analysis. Sparsity of ¢,, however, depends on vari-
able z and is completely different from the sparsity of
impressed wave vector ¢. The FB-substitution code gen-
erated for the analysis may be utilized for sensitivity
only if, taking no account of the ¢ sparseness, a complete
code has been generated. Generation of the complete I'B-
substitution code, however, while it does not produce a
substantial code increase, could become useful even when
analyses of the same circuit with different excitation con-
ditions! have to be effected.

Thus the evaluation of all wave sensitivities with re-
spect to a given variable z implies an extra central process-
ing unit (CPU) time which is very short compared to
that required by the analysis alone; for every new variable
z, one more FB substitution is necessary.

The adjoint circuit method may be deduced very simply
from (10). In fact, if only the sensitivity of wave a, at
port j has to be determined, by letting vy, be a row

! This is the case when the circuit scattering matrix with reference
to all external ports has to be computed.
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vector with all the elements zero except a 1 in position j

YT =10-1000],  1<j<n (12)
one obtains from (10)
c’)a,- Taa T aS
S T = N TW I g = af 22 13
oz YV oz ! % a9 ¢ (13)
where vector
o= (VWT = (W)7y, = Wy, (14)

can be interpreted as the incident wave vector of a circuit
described by a matrix W = W7 = (T — ST) and excited
according to vy;. Such a circuit has the same connection
matrix I' as the original one but its components have
scattering matrices 8,7,8,%+++ 8,7 equal to the transpose
of the corresponding ones in the original circuit.

The effort in computing sensitivity by (13) is, at first
glance, greater than that due to (10), because determina-
tion of & by (14) implies the transpgsition of component
matrices and the execution of the LU-factorization code
in addition to the execution of the FB-substitution code.?

When vector a of incident waves at the adjoint circuit
ports has, however, been obtained, the sensitivity of a;
with respect to any variable can be computed only by
applying (13) for different variables x,xs,« * +,Zn-

In conclusion, the adjoint network method might be
preferred when sensitivities with respect to many vari-
ables have to be computed. However, if sparse-matrix
solution with code generation is adopted, the extra time
required by the direct method could not be so long as to
make the adjoint one preferable to it, even taking into
account that the direct method furnishes the sensitivities
of all waves a at the same time.

ProgrAM DESCRIPTION

A program (BmT) has been implemented which supplies
all the requested network functions starting from the
complete description of the circuit to be analyzed. It has
been divided into three phases which can each be executed
independently in order to obtain good flexibility of utiliza-
tion and, on the other hand, considerable reduction of
central memory requirement.

Phase 1—Data I'nput and Interpretation

The input data are organized in three groups as follows.

1) Command instructions to choose the output options
(wave vectors, circuit response functions, S parameters,
sensitivities, group delay, ete.).

? Execution of the LU-factorization code might be avoided by
taking into account that from (8) we have W = W7 = g =
(LUYT = UTLT and vector e« might be obtained by a forward
substitution applied to the lower triangular matrix and a backward
one applied to the upper triangular matrix U = L7 [14]. These
substitutions, however, could not be done by the FB-substitution
code generated for solving (9) because the sparseness structure of L
and U is generally different from that of £ and U, respectively, and
a new code would have to be generated. Such a new FB-substitution
code generation would, however, be too cumbersome compared to
the execution of the LU-factorization code applied to 4%. The same
code generated for factorizing W can, in fact, be usefully employed
also for 48, due to the symmetrical structure of this matrix.
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2) Data describing circuit topology (number of compo-
nents, port numbering for every component, connections
between ports).

3) Data relative to the component parameters (directly
measured S parameters, other data in terms of which the
S parameters can be calculated by library routines or by
routines directly provided by the user). ,

The command instructions are first analyzed and coded
into orders for the program, providing diagnostic messages
when they are not correct. Subsequently, the topological
data are assembled in tables to be used in phase 2 and, on
the basis of the command instructions, component S pa-
rameters and their derivatives are computed for every
frequency point using group 3) data. These parameters,
together with those read as measured data, are organized
in files corresponding to the different frequency points
and stored in an auxiliary memory to be utilized in
phase 3.

-Phase 2—Ordering and Code Generation

This phase consists in the execution of a two-pass com-
piler-like program. It translates the circuit topological de-
scription into a Fortran code containing all the operations
whose execution gives the requested unknown vectors in
terms of the W elements and excitation vectors.

On the basis of the circuit topological description, the
first pass determines the ordering of equations according
to the adopted algorithm and produces an intermediate
file containing a description of the nonzero positions in
the matrix obtained by reordering W. Moreover, it com-
bines every nonzero with the address of the location, in
the file arranged during phase 1, which contains the value
of the corresponding S parameter. To avoid memory
waste, all these data are stored in tables pseudodynam-
ically allocated by a group of routines set up for that
purpose [ 15]. Their use allows the request of tables whose
size is determined during program execution, and the
release of memory space reserved for tables no longer
required.

The second pass generates a Fortran code formed by
the factorization and substitution routines and their main
program. The generated code is stored in an auxiliary
memory to reduce central memory occupation even. fur-
ther. The decision to generate the code in Fortran language
derives from its machine independence even if the use of
a machine language would have allowed faster execution.

When the generated code is complete, it is brought back
into the central memory and compiled. The object code
which is obtained is automatically stored in a temporary
file by the computer operating system; on user request,
it is possible to store it in a private permanent file.

Phase 3—Loading and Execution

The object code is loaded into the central memory to-
gether with the precompiled library routines which have
been written to manage the procedures chosen by the
command instructions. The most general execution proce-
dure is that relative to the computation of sensitivity; in
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accordance with the direct method adopted it involves,
for every frequency point, the following operations.

1) Execution of the LU-factorization code utilizing the
S parameters arranged in phase 1.

2) Execution of the FB-substitution code utilizing the
vector of impressed waves ¢. So, the normalized waves a
and b at every component port are obtained.

3) Computation of any response functions requested.
4) Evaluation of the vector c¢;, defined in (11), for
each variable #. )

5) Execution of the FB-substitution code for every c,
vector, each being utilized as an excitation vector. Every
execution gives the sensitivities of incident waves at all
the component ports relative to a variable .

If sensitivities have not to be computed, the procedure
terminates after the third point.

Phase 3 is not necessarily preceded by both the others.
In fact, on user request, it is possible to store the object
code in a permanent file and utilize it subsequently to
perform new analyses of circuits with the same topology
but with different parameter values. Therefore, the extra
CPU time necessary to generate and compile the code is
spent only once, even if many analyses are executed and
also, at different times. The whole procedure is shown in
the flow diagram of Fig. 1.

( Data

input

Data
Interpretation

Evaluation
N of component
parameters

To be generated Equation ordering

and code
generation

|

Code
compilation

Stored ina
permanent file

Output print

Fig. 1. BMT program organization.



268
A NvumrericAL ExampLe

In order to give quantitative information on the pro-
“gram, the thin-film strip-line branching filter in Fig. 2(a)
has been analyzed. It has been described for the program
" ag shown in Fig. 2(b) with port 1 connected to a generator,
ports 2 and 3 to loads, and all the others to open-cireuit
terminations.
The transmission coeflicients

Sar = | Se1 | exp ( jBa1)
Ss1 = | Sa1 | exp (jBa)

have been computed and their moduli plotted versus fre-
quency in Fig. 3. Moreover, the group delay of Sy

-

3B Im ( 1 '3331)
Top = —— = _—
n dw Sa1 0w
and the sensitivities of | Sy |
M= dln| Ss | — < Re [L 6831]
aln,e £%1 de
dln [ S:n | [ 1 aSsl:I
Ms;=—"—=9§Re|——
T oo “Sa 9

2

=

—

S fun [ niulu] S
g [N AN AN

(a) Thin-film strip-line branching-filter. (b) Its description
for program BMT.

Fig. 2.
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Fig. 3. Moduli of S»; and 83, of the filter of Fig. 2.

1.30

120 1.35

. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MARCH 1974

relative to permittivity e and thickness § of the microstrip
ceramic substrate, have been determined and plotted
versus frequency in Figs. 4, 5 and 6, respectively. The
thin-film -coupled-line component S parameters have been
determined from geometrical deseription by routines [16]
agsociated to the program.

In the example given, W is a 96 X 96 matrix with 384
nonzeros. The CDC6600 CPU time for ordering W and

1.15 120 1.25 1.30 1.35

1.05 f (GHz)
Fig. 4. Group delay of S;;.
.ME A
80 1
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0 4
105 110 115 120 125\ 130 ' 135 { (GHz)
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Fig. 5. Sensitivity of | Ss1 | relative to permittivity e of the micro~

strip ceramic substrate.

M3 A

- $ -

1.30 135 f (GHz)

Fig. 6. Sensitivity of | Ss; | relative to thickness & of the micro-
strip ceramic substrate.
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for generating and compiling the factorization and substi-
tution code is about 10 s. The generated code is composed
of 1410 statements and the fills number 139. The time
spent in executing the LU-factorization code once is
about 8 ms, while that for the FB-substitution code is
about 5 ms. Therefore, the time required to evaluate the
normalized waves at all the ports is about 13 ms for every
frequency point. Maximum memory, about 30k words,
was required during generated code compilation, including
the 16k words of the compiler.

CoNcLusIoNs

The connection scattering matrix W, which completely
describes a microwave cireuit by topological information
and the component S parameters, has been defined.

A microwave circuit analysis technique based on the
reduced Crout method applied to W, has been discussed.
It consists in generating a Fortran code composed of the
statements which are strictly necessary to execute the
LU factorization and FB-substitution procedures. The
advantage in employing the generated code itself for
computing group delays and sensitivities has been shown
and the relative procedures examined.

The organization of program smt, which supplies vari-
ous network functions (wave vectors, circuit response
funetions, sensitivities, group delay, ete.), starting from
the complete deseription of the circuit to be analyzed,
has been presented. The efficiency of the program has
been proved with a numerical example.
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