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Microwave Circuit Analysis by Sparse-Matrix Techniques

FLAVIO BONFATTI, STUDENT MEMBER, IEEE, VITO A. MONACO, MEMBER, IEEE, AND

PAOLO TIBERIO, MEMBER, IEEE

Abstract—Linear microwave circuit analysis by sparse-matrix

techniques is discussed. Optimum equation ordering and pivoting

are proposed to reduce execution time, storage requirement, and to

improve accuracy. A direct first-order sensitivity method using

sparse-matrix techniques is proposed and compared with the adjoint

network method. Details on the implemented program and a nu-

merical example are given.

INTRODUCTION

THE ADVANTAGES which derive from the use of

scattering matrices in microwave circuit analysis and

design have been clearly recognized for some time [l]-

[6]. They arise from the greater convenience of describing

circuit performance in terms of normalized waves, and

from the possibility offered by scattering parameters of

being easily measured on wide frequency bands by auto-

matic measure systems [7], and this allows the charac-

terization of those components which, especially at very

high frequencies, cannot be schematized by lumped ele-

ment circuits. These interesting features gain great weight

when the design concerns circuits to b-e made by modern

techniques (such as thin- fihn, thick-film, or integrated

circuits) since experimental iteration techniques camot

be adopted and the circuit must be defined with all details

before its realization.

In this paper, a suitable mathematical formulation is

proposed, both for normalized waves and for first-order

sensitivity. A matrix W is defined which completely de-

scribes the circuit by topological information and compo-

nent S parameters. Pivoting and optimal equation order-

ing are discussed to ensure good precision and to reduce

the computation effort. Finally, a program which deter-

mines the requested network functions on the basis of a

complete circuit description is presented and a numerical

example is given to prove its efficiency.

PROBLEM FORMULATION

For every microwave circuit component with n~ ports,
a system of n~ equations can be written

bk = Skak (1)

& being its scattering matrix and ak and bk the vectors of

incident and reflected waves at its nk ports. A generator,

instead, is described by the relation

Manuscript received June 25, 1973; revised September 19, 1973.
This work was supported by the Itahan Research Council (CNR).

The authors are with the Istituto di Elettronica, Universit~ di
Bologna, Centro Interazione Operator&Caleolatore (CNR), Bologna,
Italy.

b. = Sea. + c, (2)

to take the impressed wave c. into account, too.

Collecting together the equations relative to all the m

components and generators, a system describing the cir-

cuit with all the elements uncoupled is obtained:

b= Sa+c (3)

where

a=

an

bl

, b= b,

bm

c1

> c= c~ ,

cm

SI -.. 0 ... 0 I
S=lo -.. s, -.. 01 (4)

10 --- 0 ..- Sml

ai, b~, and Ci being incident, reflected, and impressed wave

vectors relative to the ith component and Si its scattering

matrix.

The connections between various components imposed

by circuit topology introduce constraints on incident and

reflected waves at adjacent ports which may be put in

the form

b=ra (5)

r being the connection matrix. Its elements are all zeros

except those in the entries corresponding to adjacent

ports, which are 1’s if normalization numbers are the

same [3], [4], [6].

From (3) and (5), by setting

W=r–s (6)

one obtains

a = W–lc b = r W–lc (7)

which completely describe the circuit behavior and allow

determination of the waves a and b at all the component

ports when impressed waves c are given.

W is hereafter referred to as the connection scattering

matrix; its order

m
n=~n;

;=I

equals the total number of component ports.
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SPARSE-MATRIX SOLUTION AND EQUATION ORDERING

A discussion on the properties of matrix Wis .givenin

this section in order to find the most convenient tech-

niqucto solve system (i’).

The computational effort can be greatly reduced by

taking into account the following.

1) The only nonzero elements of matrix W are: the

diagonal ones, which are the reflection coefficients at com-

ponent ports; those in the entries corresponding to ports

belonging to the same component, which are the trans-

mission coefficients between the two ports; and those

corresponding to ports connected together, which take

the constant value 1.

2) The sparseness structure of W is fixed and does not

depend on the frequency.

3) Numerical values of nonzero elements may change

with the frequent y except the 1‘s indicating connections.

4) Vector c has nonzero terms only in positions relative

to generators.

The fixed sparseness structure of W and c makes the

Crout method-very convenient for solving system (7),

especially when it has to be solved many times with

changed coefficient values. The method consists of factor-

ing W into two matrices:

W=LU (8)

L being lower triangular and U upper triangular with 1’s

on the diagonal. Then, by the forward and back substitu-

tions,

Ly=c Ua=y (9)

derived from (7), all the wave variables may be obtained.

The elements of matrices L and U and vectors a and y

are determined by recurrent formulas [9].

All the elements of L and U can be stored in a matrix:

T= L+U– E

E being the unity matrix. It is simple to see that any tj?,

of T k zero if both wjk of W and all the products tjitikl

with 1 < i < min {j — l,lc — 1}, are zero. The nonzeros

generated by LU factorization are hereafter called jills

in accordance with current usage. The number of fills

depends on the W sparseness structure.

A great reduction in execution time can be obtained

with the reduced Crout method [10] according to

which only the nonzero operands are considered in L U

factorization and in forward–back ( FB) substitutions.

The operations involved depend only on the sparseness

structure of W and are therefore always the same for a

given circuit topology.

Since a great number of analyfies have ummlly to be

performed for the same circuit, it is very convenient to

implement the reduced Crout method by generating a

code containing only those statements which are strictly

necessary to execute the L U factorization and the FB

substitutions relative to that circuit.

Code length depends mainly on the structure of W

and, to a lesser degree, on c sparsity. It can be strongly

reduced by an appropriate ordering of the rows and col-

umns of W before generating the code. Particular atten-

tion must, however, be paid because precision depends on

the values of the pivots li~ of the reordered matrix.

Predetermined pivoting might cause, for some frequency

points, a loss of accuracy due to roundoff errors, since

the values of component parameters change with the fre-

quency. However, every row of W contains the constant

1 deriving from r which could be an ideal pivot because

it allows great precision [9] independent of frequent y

and, at the same time, divisions are avoided. Indeed,

about a half of the 1’s are modfied in the course of the

factorization process but rarely may the value of any

drop to zero and then only in anomalous cases.

In order to find the best ordering strategy for matrix

W, a computer program has been implemented which,

by simulating the L U factorization, determines the num-

ber of fills occurring and the operations involved. With

this program many ordering algorithms have been tested

on several microwave circuits and the average ratio be-

tween the nonzeros in T and in W has been assumed as

the index of ordering efficiency. Some of the tested strate-

gies have been expressly set up for matrix W and others

derived from those proposed by different authors with

reference to the nodal admittance matrix [111, [17].

These have been modified by ordering columns so as to

place 1’s on the main diagonal, since the pivoting question

is not generally taken into account in sparse solution of

the nodal admittance matrix.

A comparative examination based on the efficiency

index, speed, and simplicity of implementation, indicated

that the most convenient algorithm for the microwave

circuits described by system (7) is the following [8].

1) The couple of rows relative to adjacent ports are

considered together and ordered so that each couple has

a number of nonzeros not greater than that of the Suc-

cessive one; in every couple the row with fewer nonzeros

precedes the other.

2) The columns are then ordered so as to place all the

1’s of r on the main diagonal.

FIRST-ORDER SENSITIVITY

Sensitivities of incident and reflected wave vectors a

and b with respect to any variable x on which the param-

eters of one or more components depend, are generally

very useful to the circuit designer, both in evaluating the

dependence of circuit functions on some variables, and in

circuit optimization.

Inasmuch as circuit analysis is carried out by sparse-

matrix solution with code generation, two methods can

find useful application. One, the direct method, is con-

venient when the sensitivities of normalized waves at

many ports with respect to one variable are required.
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The other, based on adjoint circuit concepts, is preferable

when sensitivities of only one normalized wave with re-

spect to many variables have to be computed [6], [12],

[13], [18]. In order to justify this declaration, the two

methods are now briefly described.

Partial derivation of (7) with respect to a generic vari-

able z gives

f3a—= _ w-l Cw W-lc . W-1 ~ a = W-le,

ax ax
(lo)

Ihe connection matrix r being independent of z and

as
c,=ga=

asl
~ al

aSj
— (lj
ax

as.
— am
ax

(11)

Computation of wave sensitivities according to the

vector with all the elements zero except a 1 in position j

yj~=lf)... f)], f)], l<j<n (12)

one obtains from (10)

where vector

~ = (y~TW–l)T = (WT)–lyj = W-lyj (14)

can be interpreted as the incident wave vector of a circuit

described by a matrix W’ = WT = (r – ST) and excited

according to yi. Such a circuit has the same connection

matrix r as the original one but its components have,

scattering matrices SIT, S2T. . . S.T equal to the transpose

of the corresponding ones in the original circuit.

The effort in computing sensitivity by (13) is, at first

glance, ~reater than that due to (10), because determina-

tion of a by (14) implies the transposition of component

matrices and the execution of the L U-factorization code

in addition to the execution of the FB-substitution code.z

When vector a of incident waves at the adjoint circuit

ports has, however, been obtained, the sensitivity of aj

with respect to anv variable can be computed only by.

direct method consists in the application of (10) which

differs from (7) due to substitution of the impressed

wave vector c by c,. It can be computed in terms of

matrices ~ SJax of all the components depending on x

and in terms of vectors aj of the incident waves at their

ports. These last are obtained from the circuit analysis

described in the previous section.

Sparse-matrix solution applied to (10) requires the L U

factorization of W and FB substitution according to vec-

tor c,, The former having been executed for analysis does

not require any computation while the latter consists of

a number of arithmetical operations corresponding to the

execution of the FB-substitution code already generated

for the analysis. Sparsity of c,, however, depends on vari-

able x and is completely different from the sparsity of

impressed wave vector c. The FB-substitution code gen-

erated for the analysis may be utilized for sensitivity y

only if, taking no account of the c sparseness, a complete

code has been generated. Generation of the complete FB-

substitution code, however, while it does not produce a

substantial code increase, could become useful even when

analyses of the same circuit with different excitation con-

ditional have to ke effected.

Thus the evaluation of all wave sensitivities with re-

spect to a given variable z implies an extra central process-

ing unit (CPU) time which is very short compared to

that required by the analysis alone; for every new variable

z, one more FB substitution is necessary.

The adjoint circuit method maybe deduced very simply

from (10). In fact, if only the sensitivity of wave a, at

port ~ has to be determined, by letting yjT be a row

1 This is the case when the circuit scattering matrix with reference
to all external ports has to be computed.

applying (13 ) for cliff erent variables xl, Xz,. . . .Xfi.

In conclusion, the adjoint network method might be

preferred when sensitivities with respect to many vari-

ables have to be computed. However, if sparse-matrix

solution with code generation is adopted, the extra time

required by the direct method could not be so long as to

make the adjoint one preferable to it, even taking into

account that the direct method furnishes the sensitivities

of all waves a at the same time.

PROGRAM DESCRIPTION

A program (BMT) has been implemented which supplies

all the requested network functions starting from the

complete description of the circuit to be analyzed. It has

been divided into three phases which can each be executed

independently in order to obtain good flexibility of utiliza-

tion and, on the other hand, considerable reduction of

central memory requirement.

Phase l—~ata Input and Interpretation

The input data are organized in three groups as follows.

1) Command instructions to choose the output options

(wave vectors, circuit response functions, A’ parameters,

sensitivities, group delay, etc. ).

ZExecution of the LU-factorization code might be avoided by
taking into account that from (8) we have W = WT = sw =
(~U)T = UTW’ and vector a might be obtained by a forward
substitution applied to the lower triangular matrix and a backward
one applied to the upper triangular matrix % = L~ [14]. These
substitutions, however, could not be done by the FB-substitution
code generated for solving (9) because the sparseness structure of L
and U is generally different from that of d.3and W, respectively, and
a new code would have to be generated. Such a new FB-substitution
code generation would, however, be too cumbersome compared to
the execution of the LU-factorization code applied to W. The same
code generated for factorizing W can, in fact, be usefully employed
also for W, due to the symmetrical structure of thk matrix.
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2) Data describing circuit topology (number of compo-

nents, port numbering for every component, connections

between ports).

3) Data relative to the component parameters (directly

measured S parameters, other data in terms of which the

S’ parameters can be calculated by library routines or by

routines directly provided by the user).

The command instructions are fird analyzed and coded

into orders for the program, providing diagnostic messages

when they are not correct. Subsequently, the topological

data are assembled in tables to be used in phase 2 and, on

the basis of the command instructions, component S’ pa-

rameters and their derivatives are computed for every

frequency point using group 3) data. These parameters,

together with those read as measured data, are organized

in files corresponding to the different frequency points

and stored in an auxiliary memory to be utilized in

phase 3.

Phase 2—Ordering and Code Generation

This phase consists in the execution of a two-pass com-

piler-like program. It translates the circuit topological de-

scription into a Fortran code containing all the operations

whose execution gives the requested unknown vectors in

terms of the W elements and excitation vectors.

On the basis of the circuit topological description, the

first pass determines the ordering of equations according

to the adopted algorithm and produces an intermediate

file containing a description of the nonzero positions in

the matrix obtained by reordering W. Moreover, it com-

bines every nonzero with the address of the location, in

the file arranged during phase 1, which contains the value

of the corresponding S parameter. To avoid memory

waste, all these data are stored in tables pseudodynam--

ically allocated by a group of routines set up for that

purpose [1.5]. Their use allows the request of tables whose

size is determined during program execution, and the

release of memory space reserved for tables no longer

required.

The second pass generates a Fortran code formed by

the factorization and substitution routines and their main

program. The generated code is stored in an auxiliary

memory to reduce central memory occupation even fur-

ther. The decision to generate the code in Fortran language

derives from its machine independence even if the use of

a machine language would have allowed faster execution.

When the generated code is complete, it is brought back

into the central memory and compiled. The object code

which is obtained is automatically stored in a temporary

file by the computer operating system; on user request,

it is possible to store it in a private permanent file.

Phase 3—Loading and Ezecution

The object code is loaded into the central memory to-

gether with the precompiled library routines which have

been written to manage the procedures chosen by the

command instructions. The most general execution proce-

dure is that relative to the computation of sensitivity; in

accordance with the direct method adopted it involves,

for every frequency point, the following operations.

1) Execution of the L U-factorization code utilizing the

S parameters arranged in phase 1.

2) Execution of the FB-substitution code utilizing the

vector of impressed waves c. So, the normalized waves a

and b at every component port are obtained.

3) Computation of any response. functions requested.

4) Evaluation of the vector c., defined in (11), for

each variable x.

5) Execution of the FB-substitution code for every c,

vector, each being utilized as an excitation vector. Every

execution gives the sensitivities of incident waves at all

the component ports relative to a variable x.

If sensitivities have not to be computed, the procedure

terminates after the third point.

Phase 3 is not necessarily preceded by both the others.

In fact, on user request, it is possible to store the object

code in a permanent file and utilize it subsequently to

perform new analyses of circuits with the same topology

but with different parameter values. Therefore, the extra

CPU time necessary to generate and compile the code is

spent ordy once, even if many analyses are executed and

also, at different times. The whole procedure is shown in

the flow diagram of Fig. 1.

1

M I I
Execution I

L I

I
1

IuOutlnllWlnt

Fig. 1. mm program organization.
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A NUMERICAL EXAMPLE

In order to give quantitative information on the pro-

gram, thethin-film strip-line branching filter in Fig. 2(a)

has been analyzed. Ithasbeen described for the program

as shown in Fig. 2(b) with port 1 connected to a generator,

ports 2 and 3 ~o loads, and all the others to o~en-circuit

terminations.

The transmission coefficients

S21 = \ S21 \ exp (j/321)

SU = I SU I exp ( j/3J

have been computed and their moduli plotted versus fre-

quency in Fig. 3. Moreover, the group delay of Ssl

w31

()

1 8s31
—=Im ——

’31 = au S31 &J

and the sensitivities of I Ssl I

(b)

Fig. 2. (a) Thin-film strip-line branching-filter. (b) Its description
for program mwT.
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relative to perrnittivity e and thickness 13of the microstrip

ceramic su-bstrate, have been determined and plotted

versus frequency in Figs. 4, 5 and 6, respectively. The

thin-film coupled-line component S parameters have been

determined from geometrical description by routines [16]

associated to the program.

In the example given, W is a 96 X 96 matrix with 384

nonzeros. The CDC6600 CPU time for ordering W and

‘31
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t
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Fig. 4. Group delay of L&.
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Fig. 5. Sensitivity of \ S’,1I relative to permittivit y . of the micro-
strip ceramic substrate.
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Fig. 6. Sensitivity of ] S31 I relative to thickness ?i of the micro-
Fig. 3. Moduli of S,l and S31 of the filter of Fig. 2. strip ceramic substrate.
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for generating and compiling the factorization and substi-

tution code is about 10 s. The generated code is composed

of 1410 statements and the fills number 139. The time

spent in executing the L U-factorization code once is

about 8 ms, while that for the FB-substitution code is

about .5 ms. Therefore, the time required to evaluate the

normalized waves at all the ports is about 13 ms for every

frequency point. Maximum memory, about 30k words,

was required during generated code compilation, including

the 16k words of the compiler.

CONCLUSIONS

The connection scattering matrix W, which completely

describes a microwave circuit by topological information

and the component S parameters, has been defined.

A microwave circuit analysis technique based on the

reduced Crout method applied to W, has been discussed.

It consists in generating a Fortran code composed of the

statements which are strictly necessary to execute the

LU factorization and FB-substitution procedures. The

advantage in employing the generated code itself for

computing group delays and sensitivities has been shown

and the relative procedures examined.

The organization of program BMT, which supplies vari-

ous network functions (wave vectors, circuit response

functions, sensitivities, group delay, etc.), starting from

the complete description of the circuit to be analyzed,

has been presented. The efficiency of the program has

been proved with a numerical example.
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